ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҒЫЛЫМ және жоғары білім МИНИСТРЛІГІ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ **KA3AXCTAH**

THE MINISTRY OF SCIENCE AND HIGHER **EDUCATION OF THE** REPUBLIC OF KAZAKHSTAN

SOUTH KAZAKHSTAN STATE PEDAGOGICAL UNIVERSITY

ОНТУСТІК ҚАЗАҚСТАН **МЕМЛЕКЕТТІК** ПЕДАГОГИКАЛЫК **УНИВЕРСИТЕТІ**

ЮЖНО-КАЗАХСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ **УНИВЕРСИТЕТ**

SOUTH KAZAKHSTAN STATE PEDAGOGICAL UNIVERSITY

Университетінің Ғылыми кеңесінде бекітілген, кеңес төрағасы Оңтүстік Қазақстан мемлекеттік педагогикалық университетінің Басқарматі төрағасы-Ректор, т.т.к. доцент

Утверждено на Ученом совете университета, председатель совета председатель Правления-Ректор Южно- Казахстанского государственного петагогического университета, какна доцент

Approved by the University Academic Council, Chairma of the Board-Rector of the So Kazakhstan State Pedagogic University, Candidate of Historical Sciences, Associate Professor

Г.Д.Сугирбаева

Хаттама №

Протокол № « » 2022г. Protocol № « » 202

БІЛІМ БЕРУ БАҒДАРЛАМАСЫ

ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

EDUCATIONAL PROGRAM

7М01504 ХИМИЯ ПЕДАГОГІН ДАЯРЛАУ

7М01504 ПОДГОТОВКА ПЕДАГОГА по химии

7M01504 TEACHER TRAINING OF CHEMISTRY

Шымкент 2022

EDUCATIONAL PROGRAM 7M01504 TEACHER TRAINING OF CHEMISTRY

	Code and classification of the field of education:	7M01 Pedagogical Sciences
	Code and classification of training course:	7M01504 Training of teachers in natural science subjects
A	Awarded degree:	Master of pedagogical sciences in the educational program 7M01504-"Teacher training in chemistry"
7	Type of program:	Magistracy, 7 level NQF/SQF/ISCE
]	Total amount of credits:	120 Academic credits
S		at the meeting of the council of the Natural approval by the Academic Council of the
P	rotokol №"" 202:	2 y.
	he educational program was approved fithe University and put action.	l by the decision of the Academic Council

" 2022 y.

Protokol №

Agreed:

Member of the Board-Vice-Rector for Academic Affairs

Kudysheva A.A.

Member of the Management Board - Acting Vice-Rector for Research and Innovation

Ualikhanov B.S.

Head of the Department of Academic Affairs, Ph.D.

Berdaliev D.T.

Director of the Institute of Postgraduate Education South Kazakhstan State Pedagogical University, Ph.D.

Zhylysbaeva A.N.

Dean of the Faculty of Natúral Sciences

Saulembayev A.T

Head of the Department of Chemistry of

M. Auezov South Kazakhstan University,

Technical Candidate of Sciences, Associate Professoria

Yermakhanov M. N.

Vice-Rector for Academic Affairs of the Central Asian Innovation University Ph.D. Associate Professor

Duisenov N.Zh.

Chairman of the Public Association

Zhas Galym – zhastar "

Toltebay A. Zh.

The Working Group on the development of the educational program

Nº	Full name	Position	Contact phone
1	Shagrayeva Bibigul Bekenovna	Candidate chemical sciences, docent, Head of Department of Chemistry of SKSPU	87014632964
2	Shertayeva Nailya Turdygalievna	Candidate chemical sciences, docent of Department of Chemistry of SKSPU	87477014368
3	Zhylysbaeva Akkonyr Nurdullaevna	PhD, Associate Professor, Director of the Institute of Postgraduate Education	87014419535
4	Bitursyn Saule Serikovna	PhD. Senior lecturer of the Department of Chemistry	87014270174
5	Zhurkabayeva Lyra Ashimovna	Candidate chemical sciences, Head of Department of Chemistry of South Kazakhstan State University after M. Auezov	87782187709
6	Berdalieva Akmaral Makulbekovna	Candidate of Agricultural Sciences, Head of the Department of Chemistry and Biology of the Central Asian Innovation University	87014294211

Experts

№	Full name	Position	Contact phone
	Myrzakhmetova	Ph.D., Associate Professor, Kazakh National	87022504837
1	Nurbala	Pedagogical University Women	
	Orazimbekovna		
2	Adyrbekova Gulmira	Ph.D., Professor of M. Auezov SKSU	87015910591
	Menlibayevna		

Abbreviations:

NQF - National Qualifications Framework

IQF - Industry Qualifications Framework

ISCE - International Standard Classification of Education

EP - Educational Program

WC - Working curriculum

PED - Product elective disciplines

KC - Key competencies

LO - Learning Outcomes

ICT - Information and communication technologies

LC - Landmark control

CC - Current control

FG - The final grade

GED - General educational disciplines

BD - Basic disciplines

SD - Specialized disciplines

CONTENT

Introduction	5
1 passport of the educational program	6
1.1 Scope of professional activity of graduates	6
1.2 Objects of professional work of the graduate	6
1.3 Types of professional activity of graduates	6
1.4 Objectives of professional activity of the graduate	6
2 Features of the educational program	7
3 Goals and Values of the Educational Program	7
3.1 Aims and objectives of the educational program	7
3.2 Values of the Educational Program	8
4 Graduate model	8
5 Expected results of the educational curriculum	9
6 Policy evaluation of academic achievements	11
7 Methods and techniques for the implementation of the organization of educational process	ten
8 Scientific research work of the master	16
9 Content of educational program	
9.1 Correspondence of educational results in the educational program to the formed	
competencies	17
9.2 Information on the module	14
9.3 Information about the disciplines	23
9.4 Working curriculum of educational programs	41

INTRODUCTION

The educational program (hereinafter - EP) of postgraduate vocational education EP7M01504 "Preparing Chemistry Teachers" is a normative document of a conceptual nature, based on the goals and values of university education. It contains general information about the professional activity of the student; the goals and objectives of the EP; graduate competency model; expected learning outcomes and their evaluation policies; methods and ways of organizing the educational process; content modules and disciplines.

Thedeveloped on the basis of the request of employers study program wasin accordance with the Klas-Sifikator of specialties of postgraduate education (magistracy), Teacher's Professional Standard, Dublin Descriptors Level 2, agreed with the 2nd cycle of the Qualification Framework of the European Higher Education Area (A Framework for Qualificationso fthe European Higher Education Area), the 7th level of the European Qualifications Framework for Lifelong Education (The European Qualifications Framework for Lifelong Learning) and the 7th level of the National Qualifications Framework of the Republic of Kazakhstan, taking into account the requirements regional labor market.

The main directions of the educational program:

- implementation of the educational policy of the university;
- high-quality training of highly qualified masters in demand on the international and national labor market;
- conducting fundamental research in the field of Russian linguistics and literary criticism;
- The introduction of a trilingual education at the university; expanding fluency in Russian and English to participate in international conferences, continuing education on academic mobility;
- the formation of the world of undergraduates, the development of their creativity, communication, critical thinking, research and information skills.

EP is the basis for the development of the following documents:

- catalog of elective disciplines (CED);
- academic calendar of the educational process;
- the individual curriculum (IC);
- working curriculum (WC);
- working curriculum discipline (syllabus);
- educational and methodical complexes of disciplines (EMCD);
- expected learning outcomes in the disciplines;
- criteria for evaluating the results of training in the disciplines;
- The organization of all kinds of professional practice, as well as other documents necessary for the organization of the educational process.

1 PASSPORT OF THE EDUCATIONAL PROGRAM

1.1 The sphere of professional activity of graduate

7M01504 "Preparing teachers of chemistry" carries out its professional activities:

- in organizations of secondary, higher and additional professional education, research, design organizations and production activities;
- research activities in the field of advanced training in accordance with the specialization, in manufacturing and in the field of education
- -in the field of administrative activities in accordance with a master's qualification imii.

1.2 Objects of the graduate's professional activity:

- technical and vocational education organizations;
- organizations of higher and postgraduate education;
- pedagogical research institutions;
- Institutes of advanced training and retraining of education workers;

- governing bodies, authorized and local executive bodies, including education;
- state and non-state institutions related to the preparation of graduates of the scientific and pedagogical direction.

1.3 Types of graduate professional activity:

- educational;
- research;
- organizational and managerial;
- educational;
- social and pedagogical.

1.4 The tasks of the graduate's professional activity

In the field of educational activity:

- development and deepening of the theoretical and practical training of undergraduates, taking into account the updated educational programs;
- effective using modern methodologies professional training, design and management of the pedagogical process;
- diagnostics, correction and forecasting of the results of pedagogical activity, planning professional development;
- use of the latest educational IT-technologies;
- performing the functions of a teacher (specialist teacher) in organizations of technical, professional higher and postgraduate education.

In the field of research activities:

- study the level of assimilation of the content of education, directions and prospects for the development of pedagogical science;
- study of the achievements of world and Kazakhstan science in the professional field, analysis and synthesis of advanced teaching experience in the field of science and education;
- implementation of methodological support of theoretical disciplines;
- integration of knowledge gained in the framework of mastering special disciplines for solving research problems in new conditions;
- development of students' research skills, motivating them for educational, cognitive and design and research activities;
- conducting a pedagogical experiment, introducing its results into the educational process;
- generate their own new scientific ideas, transfer their knowledge and ideas to the scientific community, expanding the boundaries of scientific knowledge.

In the field of organizational and management activities:

- content planning and defining methods for organizing and implementing the educational process at different levels;
- possession of the basics of strategic human resource management, innovation management, theories of leadership and team management;
- analysis evaluation of the effectiveness of the educational process through LOitoring studies;
- the implementation of industrial relations with various organizations, including the bodies of state service:
- application in practice of legislation Republic of Kazakhstan at fields of education and science.

In the field of educational activities:

- active in the organization of the educational process in a professional environment in accordance with the laws, laws, principles, educational mechanisms of the pedagogical process;
- solving specific educational tasks using various forms and means of organizing a developing environment at different levels of education;
- organization of educational work on the basis of Kazakhstan patriotism and civil responsibility;
- Creation of favorable conditions for the provision of pedagogical support and the development of full-fledged life activity, education of students.

In the field of social and educational activities:

- the interaction with the professional community and all interested parties in education;
- the formation of a polycultural personality;
- observance of the pedagogical and scientific ethics of the research scientist;
- establishing relationships with student groups, partners, the scientific community based on the principles of respect, openness, mutual understanding.

2 FEATURES OF THE EDUCATIONAL PROGRAM

The program of postgraduate education 7M01504 "Preparing Chemistry Teachers" defines the purpose and objectives, expected results, conditions and technologies of the educational process, ways of implementation, assessment of the quality of graduate training in this area, the content of the working curriculum.

The implementation of the EP is provided by free access to international information networks, library collections and databases, computer technologies, scientific, educational and methodical manuals, developments on the modules taught and the implementation of a master's thesis.

3 GOAL AND VALUES OF THE EDUCATIONAL PROGRAM

3.1 The purpose and objectives of the educational program

The purpose of the educational program is to prepare competitive scientific and pedagogical personnel in the field ofteaching chemistry, possessing general cultural and professional competences in accordance with the requirements of the labor market.

Objectives of the educational program:

- the formation of key competencies necessary for the effective implementation of the professional activities of students;
- bringing the quality of postgraduate education in line with the requirements of national and international standards;
- providing fundamental theoretical and methodical training of highly educated specialists;
- the formation of professional knowledge and practical skills with the implementation of the tasks of the updated content of education;
- motivation for professional development, promoting the development of independence, self-actualization of creative potential, active participation in the modernization of Kazakhstan society.

3.2 Values of the educational program

Values defined in the content of postgraduate study EP:

- Kazakhstan patriotism and civil liability;
- respect for national values;
- universal and social personality traits;
- awareness of the social significance of the future profession;
- motivation for personal, professional self-development;
- cooperation, openness, multiculturalism.

4 GRADUATE MODEL

- 1. subject knowledge: deep and complete understanding of the subject area, application of knowledge in professional activity.
- 2. organizational and methodological skills: uses innovative technologies in planning, organization and management of professional activities, shows critical thinking and creativity in solving complex problems.

- 3. research skills: conducts scientific and methodological research work, instills students in research work.
- 4. leadership and entrepreneurial skills: the team can also work, be active in the renewal of society.
- 5. cultural competence: has the ability to become a cultural and tolerant citizen of his country.
- 6. the ability to learn throughout life: coordinating their talents and interests with the needs of society.
- 7. information skills: understands the essence of the information society, uses ICT in professional activities.

5 EXPECTED LEARNING RESULTS FOR THE EDUCATIONAL PROGRAM

As a result of the successful completion of the educational program 7M01504 "Preparing Chemistry Teachers" the graduate must become a graduate specialist in demand in the modern labor market.

The results of training in the educational program:

- LO1: to know and apply developing knowledge and understanding in the field of chemistry teaching in the development and application of ideas in the context of research, as well as research methods and academic writing in the field being studied;
- LO2: apply the knowledge, understanding and ability to be creative in new, non-standard professional situations in a wider interdisciplinary context;
- LO3: ability to deLOstrate team work skills and a culture of academic integrity, foreign language proficiency to form your own opinion taking into account social, ethical and scientific ideas:
- LO4: organize clear and precise public communication of ideas, conclusions, and solving problems of your research work;
- LO5: integrate cross-disciplinary knowledge for independent continuation of further education in the field ofteaching chemistry.

DUBLIN DESCRIPTORS SYSTEM IN THE EDUCATIONAL PROGRAM

Dublin Descriptors	Learning Outcomes	Competences
Knowledge and understanding	DeLOstrate developing knowledge and understanding of research methods in the field of chemistry teaching, ensuring a constant expansion of the boundaries of scientific knowledge.	Expansion of knowledge
2. Application of knowledge and understanding	Apply the knowledge, understanding and ability of a creative approach in new non-standard professional situations in a wider interdisciplinary context.	Increased knowledge
3. Expression of judgments	DeLOstrate an information culture, knowledge of a foreign language to form one's judgments taking into account social, ethical and scientific considerations.	Systemic

4. Communicative abilities	Organize a clear and precise public communication of ideas, conclusions and solving problems of their research work.	
5.abilities Learning	Integrate intersubject knowledge for independent continuation of further education in the field of chemistry teaching	Systemic

6 POLICY EVALUATION OF ACADEMIC ACHIEVEMENTS

The technology of criteria-based assessment is used for all types of students' educational achievements control (everyday, midterm and final). The assessment is carried out according to the letter-point system showed at the table below

Students' educational achievements point-rating and letter evaluating system, their conversion into the traditional grading scale, ECTS

Evluation by letter	Digital	Points (%	Evaluation
system	equivalent	content)	according to the
			traditional system
A	4,0	95-100	
A-	3,67	90-94	excellent
B+	3,33	85-89	excellent
В	3,0	80-84	
B-	2,67	75-79	
C+	2,33	70-74	
С	2,0	65-69	satisfactory
C-	1,67	60-64	
D+	1,33	55-59	
D-	1,0	50-54	
FX	0,5	25-49	unsatisfactory
F	0	0-24	

The semester long students' educational achievements evaluation is carried out 3 times during one semester every 5 weeks. In each period of the current control, the teaching staff evaluates students at practical, laboratory, seminar, SSW (SSWT/SSW) and other classes, the total score of each final week of the current control is automatically displayed in the Univer system

The final ranking score for the semester is the sum of 20% of the total sum of the three final weeks of control. It makes up 60% of the final assessment of the student, and he gains the remaining 40% on the exam.

The student will be admitted to the exam only if he scores at least 30 points (passing point 0.2 * $(CC1 + CC2 + CC3) \ge 30$ points) from the current control

The result of the interm attestation is calculated by the following formula:

the current control 1 (CC1) \leq 100 the current control 2 (CC2) \leq 100

the current control $3(CC3) \le 100$

Exam (\mathbf{E}) ≤ 100

Final assessment (FA) = 0.2*(CC1+CC2+CC3)+0.4*E

The conformity of the learning outcomes and assessment methods

Learning outcome	Evaluation method
ON 2, 3	Personal assignment
ON 4, 5	Portfolio
ON 1,2,3,4,5	Practice report
ON 1,2,3,4,5	Boundary control
ON 1,2,3,4,5	Final certification

7 METHODS AND METHODS OF ORGANIZING THE EDUCATIONAL PROCESS

The organization of the educational process is carried out according to the credit technology on the basis of the electiveness of the disciplines and the order of mastering the modules, carrying out the independent work of the undergraduate, teaching and research practice, preparation and defense of the master's thesis.

Objectives of the organization of the educational process:

- unification of the volume of knowledge;
- creation of conditions for maximum individualization of training;
- strengthening the role and effectiveness of independent work of students;
- identification of educational achievements of a student on the basis of an effective and transparent procedure for LOitoring their scientific and educational activities.

Opportunities for training on credit technology:

- the introduction of a system of academic credits to assess the labor costs of students and teachers in each discipline;
- participation in the formation of an individual curriculum;
- the choice of a component of the module in the catalog of elective disciplines;
- Freedom of choice for a teacher;
- choice of educational trajectory with the help of an adviser;
- use of interactive teaching methods;
- academic freedom in the formation of educational programs;
- providing the learning process with the necessary EMCS;
- The use of effective methods of LOitoring student achievement;
- the use of a point-rating system for evaluating educational achievements in each discipline and other types of independent work.

Applied teaching methods and technologies.

Mastering EP provided by pedagogical technologies:

- Acmeological (technology to achieve success, high results);
- *psychotechnology* (development of skills for constructive creative actions based on critical, associative, abstract thinking);
- *informational* (implemented on the basis of the AIS "UNIVER 2.0" when using training resources, presentations, conducting automated testing; NER on the Bilim Media Group portal);
- ttechnology interactive learning.

The followingare used as components of these technologies *methods*:

- reflexive;
- research (learning through discovery);
- training;
- project;
- Case study and others.

Types of used methods and technologies of training are chosen by the teacher independently.

The system of internal quality assurance of the educational activity of a graduate student is determined by:

- a quality policy;
- development and approval of educational programs being implemented;
- student-centered learning, teaching and assessment;
- admission of students, performance, recognition and certification;
- teaching staff;
- learning resources and student support system;
- information management;
- public information;
- continuous LOitoring and periodic evaluation of programs;
- periodic external quality assurance.

Professional practice

Mandatory component of EP 7M01504 "Preparing Chemistry Teachers" is the practical training of undergraduates, providing for *teaching* (in the amount of not less than 5 credits) and *research* (in the amount of not less than 10 credits) practice, as well as professional (scientific) *internship*.

The purpose of pedagogical practice is the acquisition of practical skills of the professional and pedagogical activity, the strengthening of the motivation for pedagogical work in an educational institution (including higher education).

Requirements for competences (pedagogical practice):

- 1) specialist:
- on the main methods of psychological and pedagogical research;
- to have an idea about the theoretical foundations of the design and conduct of psychological and pedagogical research;
 - 2) specialist:
- apply the basics of teaching on educational programs and advise the most experienced colleagues;
- know the principles of organization of independent work of students and methods of organization of research activities;
 - 3) specialist:
 - be able to make personal choices in specific professional situations;
- to carry out teaching activities on educational programs, advising the most experienced colleagues;
- to be able to determine the educational goals, types of classes, to use different types of organization of educational activities of students; to assess the effectiveness of educational activities, to choose forms of control and use diagnostics;
 - 4) specialist:
- methods and technologies of organization and evaluation of the results of research activities;
 - skills of realization of educational programs;
- fundamentals of scientific-methodical and educational-methodical work: structuring skills and psychologically competent transformation of scientific knowledge into educational material, systematization of educational and educational tasks;
- to possess methods and methods of drawing up tasks, exercises, TES-tov on various subjects, oral and written presentation of subject materials, various educational technologies.

Report on the results of pedagogical practice

Certification of the results of pedagogical practice is carried out on the basis of a written report, diary and comment on the internship, drawn up in accordance with the established requirements, compiled by the practice head. In a review, the manager assesses the development of skills in pedagogical activity, attitudes towards work performed, and practice (degree of responsibility, independence, creativity, interest in work, etc.). The report on pedagogical practice should contain information on the specific work performed during the internship period.

The research practice of the undergraduate is conducted in order to study the latest theoretical, methodological and technological achievements of domestic and foreign science, as well as consolidate practical skills, apply modern methods of scientific research, process and interpret experimental data in the dissertation research. The content of research practice is determined by the theme of the dissertation (project) research.

During the period of research practice the undergraduate must prepare independently 4-5 abstracts (each of not less than 50 pages) with their own conclusions and conclusion: on the latest theoretical achievements of domestic and foreign science; on the latest methodological achievements of domestic and foreign science; on technological (innovative) achievements of domestic and foreign science; on the application of modern methods of scientific research, processing and interpretation of experimental data using computer technology.

Requirements for competences (research practice):

- 1) have an idea about the possibilities of advanced scientific methods and their use at the level required in the study of pedagogical problems; about research, innovation activities in the field of vocational training;
- 2) know the wording of the initial prerequisites, the initial concept, the rationale for the choice of the topic, purpose and main objectives of the study; methods of literary search, generalization and systematization of data published on the subject under study, as well as their note-taking, summarization and discussion of the problem with the supervisor; the current state and prospects of development of educational processes, features of the activities of a vocational training institution; research methods of pedagogical processes; achievements of science and technology of education, advanced domestic and foreign experience in the field of vocational education.
- 3) to be able to formulate and solve problems arising in the course of research and educational activities and requiring in-depth professional knowledge; select the necessary research methods, modify existing and develop new methods, based on the objectives of a specific study; process the obtained experimental results, analyze and interpret them taking into account the available literature data; to conduct bibliographic work with the involvement of modern information technologies; present the results of the work done in the form of reports, abstracts, articles, designed in accordance with the existing requirements, with the involvement of modern editing and printing tools; to make educational and methodical complexes of disciplines; rationally organize the conduct of all types of training sessions;
- 4) have the skills to plan and conduct research; use of foreign languages in the amount necessary for the implementation of research activities;
 - 5) to be competent in matters of organization, planning, conducting scientific activities.

Report on the results of research practice The

certification on the results of the practice is carried out on the basis of a written report, diary and review of the internship prepared in accordance with the established requirements by the supervisor. At the initial stage, the supervisor assesses the formation of research skills, attitudes towards work, practice (degree of responsibility, autonomy, creativity, interest in work, etc.), which he sets out in the recall.

Attestation on the results of practice

According to the results of professional practices at the department (scientific seminar), reports are being protected with the participation of all undergraduates of one specialty or one direction.

The results of professional practices are evaluated by the results of protection. The head of the practice, on the basis of a review of its results and the report of the undergraduate, makes a conclusion about the quality of the undergraduate's practice and gives a mark in the form of a differentiated test. Evaluation of the practice is recorded in the examination sheet and IPK "Univer 2.0", is equal to the estimates of theoretical training and is taken into account when summing up the

overall academic performance of undergraduates and assignment to a scholarship in the relevant semester.

Criteria for assessing the quality of the practice carried out by the undergraduate trainee:

- 1. The overall assessment of the practice performed is derived based on the arithmetic average of the scores for all assessment indicators of the practice.
 - 2. Evaluation criteria (average score) for all positions:
- 3.5 the practice carried out does not meet the modern requirements of the organization of the educational process at the university;
- 3.6-3.9 general conclusion: the practice carried out meets the modern requirements of the organization of the educational process at the university;
- 4.0-4.5 a general conclusion: the practice carried out fully meets the modern requirements of the organization of the educational process at the university;
- 4.6-5.0 general conclusion: the practice is qualifying and meets the modern requirements of the organization of the educational process at the university.

8 RESEARCH WORK OF THE MASTER

The educational program 7M01504 "Preparing Chemistry Teachers" contains a research paper, including the implementation of a master's thesis, which should:

- 1) correspond to the main problems of the specialty for which the master's thesis is defended:
 - 2) be relevant, contain scientific novelty and practical significance;
- 3) to be based on modern theoretical, methodological and technological achievements of science and practice;
 - 4) performed using modern research methods;
 - 5) contain research (methodological, practical) sections on the main protected provisions;
 - 6) based on international best practices in the relevant field of knowledge.

The results of research work at the end of each period of their passage are recorded by a graduate student in the form of a report. According to the results of the research and development work carried out at the department (scientific seminar), reports are being protected with the participation of all undergraduates of one specialty or one direction.

Within the framework of the research and development work, the individual work plan of the undergraduate to get acquainted with innovative technologies and new types of production provides for the mandatory *scientific internship* in scientific organizations and / or organizations of relevant industries or fields of activity.

The final result of the research work of the undergraduate is a master's thesis (master's project).

9 CONTENTS EDUCATIONAL PROGRAM

9.1 Compliance of the educational results with the educational program to the formed competencies

The learning outcomes defined in the EP form the competencies acquired by the undergraduate after the completion of the program.

Matrix of correlation of learning outcomes of the educational program as a whole with the formed competencies

FC LO	LO 1	LO 2	LO 3	L04	LO 5
FC 1				+	
FC 2			+		
FC 3		+			
FC 4	+				
FC 5	+				
FC 6					+

9.2 Module Information

№ availabilit y of module components Module Briefdescription module Module learning outcomes	Formed competencies
The module examines the prerequisites for the development of science science philosophy of disciplines (PHD 01) Pedagogical and (Pigher School Pedagogy / Management Psychology) Pedagogical practice Pedagogical practice The module examines the prerequisites for the development of scientific knowledge, the prequisites for the development of scientific knowledge, philosophical-methodological, anthropological aspects of scientific research; place of psychological education (Higher School Pedagogy / Management psychology) Pedagogical practice The module examines the prerequisites for the development of scientific knowledge, philosophical-methodological, anthropological aspects of scientific research; place of psychology in the system of educational sciences; psychological issues of professional activity; LO 3- to analyze various non-standard situations in the field of higher education pedagogy; LO 4- assess the quality of psychological management in education; LO 5- interpret scientific methods and research techniques in the context of the interaction of the disciplines of the module.	KC1, KC2, KC5

		T	C 1 1			1	1
			of undergraduates is				
			the acquisition of				
			practical skills and				
			competencies of				
			professional and				
			pedagogical activity,				
			strengthening of				
			motivation for				
			pedagogical work in				
			an educational				
			institution, including				
			in higher education.				
	Modern	1. Theoretical	The main stages of the	LO 1- DeLOstrates	BD	15	
2	methods	aspects of	development of	knowledge and			
	of	modern	modern inorganic	understanding of			
	teaching	inorganic	chemistry over the	theoretical aspects of			
	chemical	chemistry	past hundred years,	modern inorganic			
	sciences	2. Basics of	new priorities for the	chemistry and			
	(MMTCS	applied	development of	fundamentals of applied			
	02)	chemistry	chemical processes,	chemistry;			
			modern topical	LO 2- Analyzes the			
		1. Current	problems of	sequence of stages of an			
		aspects of	chemistry,	experiment in chemistry			
		teaching	fundamental laws of	LO 3- generates reports			
		chemistry at	chemistry, scientific	in different ways.			
		the university	foundations of the	LO 4- uses professional			
		2.	chemical industry,	communication skills and			
		Technology	modern scientific	the ability to work in a			
		for solving	content of education,	team.			
		experimental	methods, ways of	LO 5- systematizes and			
		problems in	creating experimental	evaluates the results			
		chemistry	problems, basic	obtained.			
		1. Methods of	methods of designing	LO 6- analyzes the			
		implementati	"green" chemical	technology and			
		on of green	processes, modern	experimental methods for			
		chemistry	scientific principles of	the production of			
		processes and	chemical processes	chemicals from the point			
		out-of-	are considered,	of view of their safety for			
		laboratory	ensuring the reduction	the environment and			
		analysis	and elimination of	humans;			
		2.	negative impact on the				
		Toxicology	environment. The				
		and	analysis of theoretical				
		environmenta	conclusions,				
		1 chemistry	collection of				
			experimental results,				
			proof, application in				
			practice, integration of				
			interdisciplinary				
			knowledge, methods				
			of using ICT				
			capabilities in the				
L		I .		I	l	l	

				Г	l		
			formation of				
			knowledge, skills and				
			abilities in teaching				
			chemistry are				
			described.				
_	Theoretica	Methodology	The features of the	LO1-uses innovative	BD	22	
3	1	and modern	content of the	methods and			
	foundation	technologies	formation of	technologies in the			
	s of	of teaching	theoretical	process of teaching			
	modern	general and	foundations in general	general and inorganic			
	chemistry	inorganic	and inorganic	chemistry.			
	(TFMC	chemistry	chemistry, the	LO2-develops skills of			
	03)	1. Theoretical	·	conscious application of			
		foundations	a scientific worldview,	knowledge.			
		of modern	elements of ecological	LO3-uses modern			
		analytical	culture, modern	information technologies			
		chemistry	methodological	in solving practical tasks			
		2. Chemistry	methods, structural	for the implementation of			
		of	and logical connection				
		organoeleme	of educational	LO4-masters the skills of			
		nt	material with a known	quantitative and			
		compounds	sequence, synthesis of	qualitative analysis,			
		1. Actual	research methods of	systematizes and			
		problems of	modern analytical	evaluates the results			
		modern	chemistry, chemistry	obtained.			
		physical	of organoelement	LO5-analyzes the			
		chemistry	compounds,	essence of chemical			
		2. Kinetics	determination of their	1 1 1 1			
		and	structure and	chemical research			
		thermodynam		methods, solving			
		ics of	mechanisms,	comproblems.			
		chemical		LO 6-collects the results			
		processes	mechanism and	of experiments and			
			structures of	research to differentiate			
			compounds in organic chemistry methods,	the characteristic features			
			,	of chemical processes.			
		1 Theory : 1	problematic issues of	LO7-explains the chemistry of chemical			
		1. Theoretical	stereochemistry, basic laws of chemical	bonds and reactivity used			
		foundations of modern	processes. The article	in organic chemistry.			
			describes	in organic chemistry.			
		organic	communication skills				
		chemistry					
		2. Theoretical	of project work, ways				
		and applied	of applying theoretical				
		aspects of chemical	data in practice,				
			collecting, analyzing				
		technology	and evaluating the				
			results of the				
			experiment and				
			research.				
			research.				

Problems of modern research and modern chemical science (PMRMC S04)	Research methods and Academic Writing 1. Methods of investigation of organic compounds 2. Modern physico-chemical research methods 1. Actual problems of modern colloidal chemistry 2. Chemistry and thermochemistry of solutions	The purpose of studying the discipline "methods of scientific research and academic writing" is to form students' skills of structural presentation of their ideas, mastering the techniques of working with various scientific and informational texts, taking into account the specifics of academic discourse. The discipline forms the written culture, critical thinking skills and linguistic and pragmatic competencies of undergraduates, improves the culture of writing through the language they speak, gives an idea of the principles and culture of academic integrity. The research studies the technologies of the	LO 3-understands the laws of written speech, defines the features of written scientific communication. LO 4-uses knowledge and understanding at a professional level, solves current problems of the industry and explains the opinion in a reasoned manner. LO 5-uses theoretical and practical knowledge, research methods to solve educational, practical and professional tasks of the industry. LO 6- generalizes and interprets information in order to form judgments taking into account socio-ethical and scientific forecasts: LO 7- develops knowledge by acquiring the skills necessary to continue the independent development of the industry in the future;	BD	27	
---	---	--	--	----	----	--

			application of modern information technologies and the organization of research work. Analysis and identification of methods for the study of current problems of electrokinetic phenomena and colloidal chemistry in modern colloidal chemistry, thermochemistry of solutions – the thermal effect of chemical reactions and the dependence of elements during the reaction on physico-chemical parameters. The ways of applying knowledge in practice, analyzing the solution of the problem, integrating interdisciplinary knowledge based on a critical approach to creating reasoned arguments about theoretical conclusions are described.	6. conducts scientific and expert evaluation of the text, adhering to the culture of academic honesty.			
5	research work of	The research work of the undergraduat	The content of the research work of the Master should	- subject to critical analysis, verification of theoretical, practical	RW M	24	KC1, KC4,
	the Master (RWM 05)	e, including the implementati on of the master's thesis	correspond to the problems of the specialty, be relevant, have a scientific novelty and practical significance; be based on theoretical,	judgments of opponents; - to argue conclusions based on their own observations at various stages of the study; - interpret and objectively evaluate			KC6

	methodological and	scientific information;		
	technological	- to rank the research,		
	achievements of	analytical and		
	science and practice;	pedagogical work of the		
	include modern	undergraduate;		
	methods of processing	- practice the		
	and interpreting data	experimental activities of		
	using information and	a researcher who owns		
	computer	modern tools of science.		
	technologies; contain			
	research			
	(methodological,			
	theoretical, practical)			
	sections on the main			
	protected provisions.			

9.3 Information about the disciplines

	Name of the discipline	Brief course of the	Cycl	Num ber					
№		discipline	e / com	of credi	(Code)				
]1≅			pone	ts	ER	ER	ER	ER	ER
			nt		1	2	3	4	5
		CYCLE OF BASE DISCIP	 PLINES						
		University Componer							
		Discipline studies the development	BD/						
	History and	processes of philosophical thoughts of	EC						
1	philosophy	various times of humanity. We consider		4		+			+
	of science	the philosophical concepts and theories							
		from ancient times to our time, their							
		influence on modern science. The basis							
		of the study of the subject of the history							
		of philosophy and science lies in the							
		philosophical understanding of the							
		scientific picture of the world, which ensures a constant renewal of the							
		boundaries of scientific knowledge.							
	Foreign	The course is aimed at expanding the	BD/						
	language	boundaries of scientific knowledge	EC EC						
2	(professiona	through the formation of intercultural,		5			+		+
_	1)	communicative and functional					'		
	,	competencies of undergraduates;							
		Improving the skills of interpreting the							
		results of our own research work by							
		foreign language resources for the							
		development of the latest trends in							
		chemistry and the recognition of							
		scientific achievements in both the							
		national and international educational							
		space.							

3	Pedagogical and psychologic al education (Higher School Pedagogy / Managemen t Psychology)	Discipline examines the direction, the structure of the study of pedagogy of higher education, the system of general epistemological studies; New methods and empirical base for the development of pedagogy through the use of tools of professional-pedagogical dialogue; directions and principles of modern psychological management, the choice of strategies for cooperation with social partners; the formation of personality at the stages of ontogenesis, special patterns of pedagogical and psychological education.	BD/ EC	6		+		+
4	1. Theoretical aspects of modern inorganic chemistry 2. Basics of applied chemistry	Considers the main stages of development of modern inorganic chemistry in the last century, the emergence of priorities of chemical processes, the analysis of the solution of actual modern problems of chemistry, new aspects of chemical reactions, real possibilities in various spheres of production and consumption. Improves knowledge by organizing public coverage of research results and problem solving; Examines the laws of fundamental chemistry, chemical methods and methods of using chemicals in industry, agriculture, as well as in everyday life. Improves knowledge by organizing public coverage of research results and	BD/ EC	5	+		+	+
5	1. Actual aspects of teaching chemistry in high school 2. Technology of solving experimenta 1 problems in chemistry	problem solving; Topical aspects of the theory, methodology and practice of chemical education are considered. In the context of modern requirements, special attention is paid to the didactic, methodological and technological bases of teaching chemistry. To solve professional problems in non-standard conditions, it implies a creative approach to the analysis and public publication of problematic solutions to ideas. In the process of studying the discipline develops the creative potential of the individual, the solution of creative tasks, intellectual abilities of undergraduates in chemical science, forms the skills to solve chemical experimental problems, improves the methods of constructing tasks of varying complexity. Defines	BD/ EC	5	+	+	+	+

		ways of preparing and submitting			1				
		chemical projects for publication.							
6	1. Methods			5					
0	for the	The fundamental educational system, which provides the possibility of		3	+			+	+
		choosing and drawing up the conditions							
	implementa tion of								
		for carrying out chemical processes,							
	green	involves the study of the basic methods							
	chemistry	of constructing chemical reactions,							
	and off-	processes, chemical processes that ensure							
	laboratory	the reduction and elimination of negative							
	analysis	environmental impacts. Characterized by							
		modern scientific principles, ways of							
		public presentation of solutions to							
		environmental problems of experimental,	DD/						
		technological approaches.	BD/						
		Interdisciplinary knowledge integrated.	EC						
		The issues of preventing chemical							
		processes contained in the atmosphere,							
	2.	water, soil, chemical pollution, cleaning							
	Toxicology	emissions of waste gases, wastewater, the							
	and	negative effects of organic, inorganic,							
	environmen	organoelement toxicants on human health							
	tal	are considered. Characterized by modern							
	chemistry	scientific principles, ways of public							
		presentation of solutions to							
		environmental problems of experimental,							
		technological approaches.							
	36.1.1.1	Interdisciplinary knowledge integrated.						1	
7	Methodolog	The use of NER in general and inorganic		6	+	+	+		+
	y and	chemistry provides for the peculiarities of							
	modern	the content of education, the scientific							
	technologie	world outlook, the practical formation of							
	s of	an environmental, information culture,							
	teaching	modern methodological methods, and the							
	general and	structural and logical connection of	BD/						
	inorganic	educational material in a certain	EC						
	chemistry	sequence. Methods and methods of							
		teaching are analyzed, professional							
		knowledge and creative abilities are							
		improved. The organizational forms of							
		learning and the mechanisms for the							
		implementation of results-based							
0		education are analyzed.	DD/	5	<u> </u>				Ι.
8	1	We consider the methods of scientific	BD/	5	+		+		+
	1.	research of modern analytical chemistry,	EC						
	Theoretical	the improvement of existing methods, the							
	foundations	design of new devices, the synthesis of							
	of modern	new reagents. Ways of integrating	1						
1	anal-4: a-1								
	analytical	interdisciplinary knowledge and using							
	analytical chemistry	ICT with modern equipment to form their							
	_								

		T	ı	ı		ı		
	2. Chemistry of organoelem ent compounds	The structure of the synthesis of chemistry of organoelement compounds, reactivity, the fundamentals of physical methods for studying reactions, and the structure of molecules in organoelement compounds when interpreting experimental results when determining reaction mechanisms are considered. Ways of integrating interdisciplinary knowledge and using ICT with modern equipment to form their own opinions on						
		methods of analysis are described.						
9	1. Actual problems of modern physical chemistry	Directivity, flow, speed of modern chemical processes, nature of the environment, impurities, radiation, etc. b. the basic laws of the definition of the reaction products. In non-standard situations, professional knowledge, ideas and creative abilities are applied in practice. The ways of integration of interdisciplinary knowledge, critical analysis of problem solutions are being implemented.	BD/ EC	6	+	+		+
	2. Kinetics and thermodyna mics of chemical processes	The kinetics of chemical processes, the main kinetic methods for the analysis of chemical, phase transformations in macroscopic systems are considered. Based on the applied knowledge, the method of constructing a kinetic model of processes in multicomponent, multiphase systems, professional knowledge, concepts and creative abilities in non-standard situations is used. The ways of integration of interdisciplinary knowledge, critical analysis of problem solutions are being implemented.						
10	1. Theoretical foundations of modern organic chemistry 2. Theoretical and applied aspects of	Examines the mechanism and methods of reactions in organic chemistry, the problematic issues of the stereochemistry of organic compounds, the laws of electronic bias, methods of protection and regeneration of functional groups in organic reactions. Able to use knowledge, creative abilities to solve theoretical and synthetic problems of modern organic chemistry, integrate interdisciplinary knowledge, characterize ways of presenting information culture. We consider the laws of applied aspects of the development of basic chemicaltechnological processes, methods of organizing processes, information about	BD/ EC	4		+	+	+

	1 ' 1		1	1		I	1		
	chemical	the raw materials of the chemical							
	technology	industry, sources of water, air and energy.							
		To solve professional problems in the							
		production of basic products of inorganic,							
		organic synthesis, it is able to use							
		knowledge and creative abilities,							
		interdisciplinary knowledge is integrated,							
		and ways of presenting information culture are characterized.							
11		The purpose of studying the discipline "	BD/	5					1
11		Research methods and Academic Letter"	EC	3	+	+			+
		is to train students in the structural	EC						
		presentation of their own ideas, to master							
		ways of working with various scientific							
	Research	and information texts taking into account							
	methods	the specifics of academic discourse. The							
	and	discipline forms the culture of writing,							
	Academic	critical thinking skills and linguistic-							
	Letter	pragmatic competences in the master 's							
	Letter	degrees, improves the written language							
		culture through the language of which it							
		is the medium, and provides insight into							
		the principles and culture of academic							
		integrity.							
		Examines the fundamental knowledge of							
		the basic methods for the study of organic							
		compounds, the actual problems of							
	1 D 1.	studying the chemical analysis of organic							
	1. Research	compounds, the characteristics of organic							
	Methods of	compounds and the principles of							
	Organic	operation of the devices. In the modern							
	Compounds	study of organic compounds, the							
		problems of physicochemical methods							
		and chemical analysis are solved, the							
		results are presented for publication and							
		interdisciplinary knowledge is integrated.							
12		research of organic compounds, actual	BD/	6	+			+	+
		problems of research of chemical analysis	EC						
	1. Methods	of organic compounds, characteristics of							
	of	organic compounds and principles of							
	investigatio	operation of devices. In the modern study							
	n of organic	of organic compounds, the issues of							
	compounds	physico-chemical methods and chemical							
		analysis are solved, the results are							
		submitted for publication and							
		interdisciplinary knowledge is integrated.							
	2. Modern	The essence of modern physico-chemical							
	physico-	methods, modes of operation of devices,							
	chemical	circuits, apparatuses, the law of light							
	research	absorption, chromatography method, IR,							
	methods	NMR spectroscopy,							
		photoelectrocolorimeter, scheme,]					

	I	T	1	ı	1	1	ı	1
		characteristics and principles of operation						
		of devices, methods of constructing						
		graded graphs are considered. Modern						
		research provides ways to integrate						
		physico-chemical methods, solve						
		problems of chemical analysis, formalize						
		results and interdisciplinary knowledge.						
13		In modern colloid chemistry, the actual	BD/	6	+	+		+
		problems of electrokinetic phenomena	EC					
	1. Actual	and colloid chemistry, various properties						
	problems of	and surface phenomena of highly						
	modern	dispersed systems are considered.						
	colloid	Practical knowledge is being applied to						
	chemistry	solve professional problems in various						
		branches of the production of colloid						
		chemistry, problem analysis, and ways of						
		integrating interdisciplinary knowledge.						
		Thermochemistry of solutions provides						
		the thermal effect of chemical reactions						
		and dependence on the physicochemical						
	2.	parameters of elements in walking, phase						
	Chemistry	transitions of heat, dissolution,						
	and	compounds and other processes, heat						
	thermoche	capacity, enthalpy and entropy of						
	mistry of	substances. To solve professional						
	solutions	problems, the ways of practical						
		application of knowledge, analysis of						
		problem solving, integration of						
		interdisciplinary knowledge are being						
		implemented.						

^{9.4} The working curriculum of the educational program